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Note 

Upwind Differencing, False Scaling, and 
Nonphysical Solutions to the Driven Cavity Problem* 

We show that, for multi-dimensional viscous flow computations, the use of upwind finite 
difference schemes can alter the natural length scales. This false scaling is related to, but 
distinct from, the artificial viscosity introduced by upwind schemes. We show that this false 
scaling can account for certain nonphysical solutions which have been computed for the 
driven cavity problem. 

1. INTRODUCTION 

It is widely known that the use of upwind finite difference schemes for equations 
describing viscous flow can introduce substantial amounts of artificial viscosity at 
high Reynolds numbers (see, e.g., Bozeman and Dalton [l] and de Vahl Davis and 
Mallinson [2]). The purpose of this paper is to show that in multidimensional 
problems, upwind differencing can also alter the natural length scales of the problem. 
In particular, in Section 3 we show how this false scaling can account for certain 
nonphysical solutions which have been computed for the driven cavity problem. 

2. FALSE SCALING 

We begin by considering a single homogeneous elliptic equation 

2 2 

g+~+~g+b%o 

3Y 3Y 

on a rectangular domain 

o<x< 1, O<Y,<Y, 

(2.1) 

with u(x, y) specified on the boundary. We assume that a and b are positive 
constants. The upwind difference scheme for (2.1) is 

(“i+ Ij - 2uij + uip lj)/dx2 + (“ij+ 1 - 2uij + Uij- ,)/dY’ 

+ a(ui+ lj - Uij)/dX + b(U,+ 1 - Uij)/dY = 0, (2.2) 

* Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is 
based upon work supported by the National Science Foundation under Grant No. MCS-7927062. 

303 
002 l-999 1/82/080303-05$02.000/0 



304 JOHNC.STRIKWERDA 

which is the same as 

(l + fU Ax)(ui+ lj - 2Uij + Ui- lj)/AX* + (1 + jb AY)(uij+ 1 - 2Uij + Uij- l)/Ay* 

+ U(Ui+ lj - Ui- Ii)/2 AX + b(uij+ 1 - uij- I)/2 AY = 0. (2.3) 

Now, for a fixed value of Ax, (2.3) can be regarded as a central difference approx- 
imation to 

(2.4) 

where 

a*= 1 +&Ax and j?‘=l++bAy. 

If we change variables in (2.4) by y’ = ya/P, we obtain, after dividing by a*, 

$+ 
a*u 

aylz 
+gC+LE=(). 

aP a~’ 
(2.5) 

If we define the Reynolds number of (2.1) as R = dm, then the Reynolds 
number of (2.5) is R’ = d(u/a)’ + (b//3)=/a’, and so R’ <R. This is the effect of 
artificial viscosity. Moreover, the rectangular region for (2.1) has the height, or 
aspect ratio, of 7, and that for (2.5) is ya/lp. We describe this change in aspect ratio 
as false scaling. 

Thus, solving (2.1) by upwind differences for given values of Ax and Ay is 
equivalent to solving (2.5) by central differences, where (2.5) has both a lower 
Reynolds number and different aspect ratio than (2.1). Since central differenting is 
second-order accurate and upwind differencing is only first-order accurate, we claim 
that the solution to (2.2) for given Ax and Ay is closer to the solution of (2.5) than it 
is to the solution of (2.1). This is indeed true for the equivalent one-dimensional 
problem for a wide range of parameters, as is shown in the Appendix. 

3. FALSE SCALING AND THE DRIVEN CAVITY PROBLEM 

We now look at the driven cavity problem to study the effect of the false scaling 
(see Bozeman and Dalton [l] for a description of the problem). The equations is 
convective form are 

a*0 a*0 ?!?f-~& 
ay ax ax ay (3.1) 

on the square 0 <x < 1, 0 < y < 1. The Reynolds number is R and w and w are the 
streamfunction and vorticity, respectively. The streamfunction and its normal 



UPWIND DIFFERENCING AND FALSE SCALING 305 

derivative are specified on the boundary. The top wall, at y = 1, moves with unit 
speed to the right. The other walls are fixed. Because of the nonlinearity of the system 
(3.1), it is impossible to analyze rigorously the effect of upwind differencing. 
Consider as a model, however, 

a2w 
-F=-*, 

2 a2w 2 a2w 
az+P2 aY 

+R av a* ----- 
ay ax ’ (3.2) 

with a > /I > 1. The constant a is taken to be greater than p since it is assumed that 
the large velocity in the x-direction near the top driving wall would give a larger 
contribution to the false diffusion than would the y-components of the velocity. 

As in the previous section, let y’ = ya/P, and the second equation in (3.2) becomes 

a2w a20 -+R awao-awao axz+ ayr2 ap ( ay’ ax ax ayl ) 
=(-j, 

which has an effective Reynolds number of R/a/3, and the domain has an effective 
aspect ratio of a//3 > 1. 

The solution of Eqs. (3.1) for a square driven cavity is characterized by a single 
large central vortex for any value of R (Pan and Acrivos [5], Bozeman and Dalton 
[ 11, de Vahl Davis and Mallinson [2], and Keller and Schreiber [8]). If the aspect 
ratio of the cavity is greater than about 1.6, the solution can have (at least) two large 
vortices (Pan and Acrivos [5] and Bozeman and Dalton [ 11). 

The use of upwind differencing for Eq. (3.1) can, however, give solutions which 
have two large vortices for a square cavity (e.g., Runchel and Wolfstein [4], Gupta 
and Manohar [6], Shay [7], and Bozeman and Dalton [l]). This solution for the 
square driven cavity is almost certainly not correct as shown by the careful studies of 
Bozeman and Dalton [ 11, Keller and Schrieber [8], and others. 

In light of the above analysis, the two-vortex solution for the square cavity can be 
explained as the result of false scaling, which makes the effective aspect ratio greater 
than 1.6. Indeed, the two-vortex solutions for the square cavity resemble the solutions 
for cavities with aspect ratio greater than 1.6 which have been squeezed onto a 
square. 

It should be pointed out that when upwind difference schemes are applied to the 
divergence form of Eq. (3.1), i.e., 

a2w a20 
- -+R ($ (SW) --$(sw)) =O, 
ax2 + ay2 

the solutions exhibit only one large vortex for R less than 1000 (Bozeman and Dalton 
[ 11). Why upwind differencing of the divergence form of (3.1) should not exhibit the 
false scaling, but only the false diffusion, is not at all clear. It could be that the false 
diffusion is less, or that it is distributed more evenly between the two directions so as 
not to give a noticeable false scaling. 
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4. CONCLUSION 

Although the analysis presented here is not completely rigorous, it does appear to 
be useful in explaining the origin of the particular nonphysical solutions of the driven 
cavity problem that have been obtained by upwind difference schemes. The analysis 
highlights an additional danger of using upwind differencing in computing viscous 
fluid flow. 

APPENDIX 

Consider the one-dimensional equivalent of (2. l), 

2 

$+u-g=o, (A.11 

with 0 ,< x < 1, a > 0, and u(0) = 1, u( 1) = 0. The upwind finite difference scheme for 
(A.l) is 

(Ui,) - 2ui + Ui_,)/AX2 + a(u,+, - UJAX = 0, (A.21 

with u0 = 1, U, = 0, and Ax = l/N. The scheme (A.2) is equivalent to the central 
difference scheme 

(1 + fU AX)((Ui+ 1 - 2Ui + Ui- ,)/AX2) + U(Ui+ 1 - pi- I)/2 AX = 0, (A.3) 

and (A.3), for fixed Ax, can be regarded as an approximation to 

d2u du 
a2--+u--=o, 

dx2 dx (A-4) 

with a’= 1 ++uAx, u(O)= 1, and u(l)=O. 
We shall show that, for a wide range of value of a, the solution of (A.2) and (A.3) 

is closer to the solution of (A.4) than it is to the solution of (A.1). This serves to 
justify our assertions in Sections 2 and 3. 

The solution to the difference equations (A.2) and (A.3) is 

ui=(l-(l+uAx)i-Y)/(l-(l+uAx)-~), 

and the solutions to (A.l) and (A.4) are 

u(x)= (1 -e- ““-“‘)/(I -e-y 

and 

(A.51 

(‘4.6) 

u(x) = (1 - e-a’(‘-x))/( 1 - e-O’), 

respectively, where a’ = u/a2. 

(A.7) 
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TABLE I 

a From A.5 

u(O.95) Rel. err. 

i 
From A.6 

u(O.95) Rel. err. 

From A.7 

1.0 0.07642 0.07715 1% 
5.0 0.20233 0.22270 10% 

10.0 0.33343 0.39349 18% 
50.0 0.71429 0.91792 28% 

100.0 0.83333 0.99326 19% 
200.0 0.90909 0.99995 10% 

0.07642 0.0% 
0.20163 0.3 % 
0.32979 1.1% 
0.6708 1 6.1% 
0.76035 8.8% 
0.81112 11.0% 

In Table I we show the values of (AS)-(A-7) for Ax = $ and several values of the 
parameter a, at x = 1 -Ax = 0.95. Also shown are the relative errors of (A.6) and 
(A.7) from (AS). This is an inverse error analysis; given the discrete solution (AS), 
we wish to know which continuous solution (A.6) or (A.7) is the better continuous 
approximation. 

Note that for 1 <a < 100, (A.7), the solution of (A.4), is closer to (A.5) than is 
(A.6), the solution of (A.3). On this basis, we justify our claim of Section 2 that the 
solutions of (2.2) are closer to the solutions of (2.5) than they are to the solutions of 
(2.1). 

For a > 100, the finite difference grid does not have any grid points in the 
boundary layer, and it is only due to the simplicity of this example that the solution 
to the finite difference scheme is close to the solution of the differential equation. For 
more difficult problems, such grid spacings cannot be regarded as adequate since they 
will not resolve any features of the boundary layer. 
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